
Hans-Petter Halvorsen

https://www.halvorsen.blog

Django and
PostgreSQL

Contents
1. Introduction

– Django
– PostgreSQL

2. Create Django Project and App
3. Django + PostgreSQL
4. Customer App
5. Django Admin

Hans-Petter Halvorsen

https://www.halvorsen.blog

Introduction

Table of Contents

Introduction
• We will create a Django Project and a Django Web Application.
• Django has support for databases like SQLite, MySQL/MariaDB and

PostgreSQL.
• Django includes an SQLite database, but for the others you need to install

the database system you want to use from their respective websites and
in addition install a Python package/driver for the specific database
system.

• In this Tutorial we will see how we can use Django in combination with
PostgreSQL.

• We will create a simple “Customer App” that retrieves a list of Customers
stored in the PostgreSQL database.

• Finally, we will use the built-in “Django Admin” module to create CRUD
functionality, i.e., the possibility to Create, Read, Update and Delete
Customers in the PostgreSQL database.

Customer App
We shall create a basic Django Web Application like this where the data
are stored in a PostgreSQL database:

Software and Tools
• Python

– We need to have Python installed to install and use
Django.

• Django
– Django is basically a Python package installed using

PIP which is part of Python.
• PostgreSQL database
• Visual Studio Code

Hans-Petter Halvorsen

https://www.halvorsen.blog

Django

Table of Contents

Django
• Django is a Python web development framework.
• Django is a back-end/server-side web framework.
• Django has support for databases like SQLite,

MySQL/MariaDB and PostgreSQL.
• Django includes an SQLite database, but for the others

you need to install the database system you want to use
from their respective websites and in addition install a
Python package/driver for the specific database system.

• Django is free, open source and written in Python.
• Homepage: https://www.djangoproject.com

https://www.djangoproject.com/

Model View Template (MVT)
Django follows the MVT design pattern (Model View Template).
• Model - The data you want to present, usually data from a

database. The models are usually located in a file called
“models.py”.

• View - A request handler that returns the relevant template
and content - based on the request from the user. The views
are usually located in a file called “views.py”.

• Template – A HTML file containing the layout of the web
page, with logic on how to display the data. The HTML
template files are stored in a subfolder called “templates”

Django Files and Folders

models.py

views.py

Filename1.html

Filename2.html

Filename3.html

urls.pyURL entered in
the Web Browser

Template Files

A View in Django is basically a Python function that handles an HTTP
request. The Views (Python Functions) are usually located in a file
called “views.py”. The view then sends the data to a specified
template in the template folder.

Templates - Django Templates are HTML files
containing the layout of the web pages, with logic
on how to display the data
The HTML template files are stored in a subfolder
called “templates”

Model - The data you want to present, usually data from a database.
The models are usually located in a file called “models.py”. A Django
model is basically a table in your database.

Its primary purpose is to map URL patterns to their corresponding views.
You could say “urls.py” is the table of contents for the Django project.

Django workflow

Data-
base

Web Browser URL: 127.0.0.1:8000/customers

View Model

Template

HTTP Request

HTTP Response
HTML Page

Django find which View to call
based on information in “urls.py”.

The Template (HTML
page) displays the
data from the Model.

The Model retrieves
data from the Database

The View handles the HTTP request from the Web
Browser and sends data to the specific Template. Then
the HTTP response is sent back to the Web Browser.

Hans-Petter Halvorsen

https://www.halvorsen.blog

PostgreSQL

Table of Contents

PostgreSQL
• PostgreSQL is an open-source relational database system.
• PostgreSQL exists for Windows, macOS and Linux.
• Homepage: https://www.postgresql.org
• EnterpriseDB (EDB) is the company that is one of the largest

contributor to PostgreSQL and responsible for the installer.
• EDB offer paid services for enterprises, but PostgreSQL itself

is free.
• ERD Download Page:

https://www.enterprisedb.com/downloads/postgres-
postgresql-downloads

https://www.postgresql.org/
https://www.enterprisedb.com/downloads/postgres-postgresql-downloads
https://www.enterprisedb.com/downloads/postgres-postgresql-downloads
https://www.enterprisedb.com/downloads/postgres-postgresql-downloads
https://www.enterprisedb.com/downloads/postgres-postgresql-downloads
https://www.enterprisedb.com/downloads/postgres-postgresql-downloads

Installation

https://www.enterprisedb.com/downloads/postgres-postgresql-downloads

I just use the default installation setup. In addition,
you need to create a password for the database
superuser that you need to remember for later.

Make sure to remember the Password!

https://www.enterprisedb.com/downloads/postgres-postgresql-downloads
https://www.enterprisedb.com/downloads/postgres-postgresql-downloads
https://www.enterprisedb.com/downloads/postgres-postgresql-downloads
https://www.enterprisedb.com/downloads/postgres-postgresql-downloads
https://www.enterprisedb.com/downloads/postgres-postgresql-downloads

pgAdmin

pgAdmin is graphical tool for managing your PostgreSQL database. pgAdmin is part of
the installer from EDB. Here you can create new Database, new Tables, execute SQL
Scripts, etc.

PostgreSQL Connection

The Password you entered
during installation of the
PostgreSQL database

Hans-Petter Halvorsen

https://www.halvorsen.blog

Create Django
Project and App

Table of Contents

Create Django Project and App
1. Create and Activate Virtual Python Environment

>python –m venv venvname

C:\...\venvname\Scripts>activate.bat

2. Install Django

...>python -m pip install Django

3. Create Django Project

...>django-admin startproject projectname

4. Run the Django Project

...>python manage.py runserver

5. Create a Django App
...>python manage.py startapp appname

We need to do these steps to
create a virtual Python
environment (which is
recommended), then install
Django. Then you need to
create a new Django Project
and a Django App.

We can use the Command
Prompt or the Terminal in
Windows. We can also use
the built-in Terminal in
Visual Studio Code.

Command Prompt and Terminal

Create and Activate Virtual Python Environment

In this example the Virtual Python
Environment is called “djangoenv”

>python –m venv djangoenv

C:\...\djangoenv\Scripts>activate.bat

Install Django and Create Django Project

In this example the Django Project is called “company”

...>python -m pip install Django

...>django-admin startproject company

Install Django:

Create Django Project:

Run the Django Project

...>python manage.py runserver

Create a Django App
In this example the Django
Project is called “customers”

We can then open the project
in Visual Studio Code:

...>python manage.py startapp customers

Create a Django App
After creating the Django App, you need to insert the “customers” App in “settings.py”:

Hans-Petter Halvorsen

https://www.halvorsen.blog

Django + PostgreSQL

Table of Contents

PostgreSQL
We can create a new Database called “Company”

psycopg2
I order to use PostgreSQL with Django we need to install the “psycopg2” Python package
in your virtual Python Environment where you are using Django.

>pip install psycopg2-binary

“settings.py”
Then change the Database Connection Setting in “settings.py”. In this file the
default database is the SQLite database that comes preinstalled with Django.
DATABASES = {

'default': {
'ENGINE': 'django.db.backends.postgresql',
'NAME': 'Company',
'USER': 'postgres',
'PASSWORD': 'xxxxxx',
'HOST': 'localhost',
'PORT': '5432',

}
}

The Password you created during
the installation of PostgreSQL, or
a password created in pgAdmin

Migrate
..>python manage.py makemigrations

..>python manage.py migrate

The migration
process updates
the PostgreSQL
database.

Here we see the
default Django
database tables
has been created:

Hans-Petter Halvorsen

https://www.halvorsen.blog

Customers App

Table of Contents

Customer App
We shall create a basic Django Web Application like this where the data are stored
in the PostgreSQL database:

Django Files and Folders

models.py

views.py

Filename1.html

Filename2.html

Filename3.html

urls.pyURL entered in
the Web Browser

Template Files

A View in Django is basically a Python function that handles an HTTP
request. The Views (Python Functions) are usually located in a file
called “views.py”. The view then sends the data to a specified
template in the template folder.

Templates - Django Templates are HTML files
containing the layout of the web pages, with logic
on how to display the data
The HTML template files are stored in a subfolder
called “templates”.

Model - The data you want to present, usually data from a database.
The models are usually located in a file called “models.py”. A Django
model is basically a table in your database.

Its primary purpose is to map URL patterns to their corresponding views.
You could say “urls.py” is the table of contents for the Django project.

Django workflow

Data-
base

Web Browser URL: 127.0.0.1:8000/customers

View Model

Template

HTTP Request

HTTP Response
HTML Page

Django find which View to call
based on information in “urls.py”.

The Template (HTML
page) displays the
data from the Model.

The Model retrieves
data from the Database

The View handles the HTTP request from the Web
Browser and sends data to the specific Template. Then
the HTTP response is sent back to the Web Browser.

Create the Model (Table)
Let's create a “Customer” Model (Table). We start by creating the Model in “models.py”:

...>python manage.py makemigrations

...>python manage.py migrate

Then “Migrate” the Model, i.e., create the
Table in the PostgreSQL database:

The Table has
been created
in
PostgreSQL:

“models.py”
from django.db import models

Create your models here.
class Customer(models.Model):

first_name = models.CharField(max_length=30)
last_name = models.CharField(max_length=30)
email = models.EmailField()
phone = models.CharField(max_length=15)
address = models.TextField()

def __str__(self):
return f"{self.first_name} {self.last_name}"

Create the Template
Create a new folder called “templates”. Then create a new Template, i.e., a HTML File called
“customers.html” in the /templates/ folder:

Templates in Django are
basically just HTML files.

“customers.html”
<!DOCTYPE html>
<html>

<head>
<title>Customers</title>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1">
<link href="https://cdn.jsdelivr.net/npm/bootstrap@5.3.3/dist/css/bootstrap.min.css" rel="stylesheet">
<script src="https://cdn.jsdelivr.net/npm/bootstrap@5.3.3/dist/js/bootstrap.bundle.min.js"></script>

</head>
<body>

<div class="container-fluid pt-5">
<h1>Customers</h1>
Here you see the customers in the database:
<div class="table-responsive">
<table class="table">

<tr>
<th>Firstname</th>
<th>Lastname</th>
<th>Email</th>
<th>Phone</th>
<th>Address</th>

</tr>
{% for customer in customers %}

<tr>
<td>{{ customer.first_name }}</td>
<td>{{ customer.last_name }}</td>
<td>{{ customer.email }}</td>
<td>{{ customer.phone }}</td>
<td>{{ customer.address }}</td>

</tr>
{% endfor %}

</table>
</body>
</html>

Note! Bootstrap is used to
boost up the appearance
of the web page.

Django code that retrieves data from
the “Customer” Model, which again
retrieves data from the customer
table in the PostgreSQL database.

Create the View

“view.py”
from django.http import HttpResponse
from django.template import loader
from .models import Customer

Create your views here.
def customers(request):

customers = Customer.objects.all()
template = loader.get_template('customers.html')
context = {

'customers': customers,
}
return HttpResponse(template.render(context, request))

“urls.py”
Create a “urls.py” file for the “customers” Django App:

Update the existing “urls.py” file
for the “company” Django Project:

Customer App
...>python manage.py runserverThen run your Django Project:

And open your Web Browser and enter the URL: 127.0.0.1:8000/customers

So far, the Database is empty

Add some Data
We can use, e.g., pgAdmin to insert some data into the table:

Customer App
We now get data that we inserted in the PostgreSQL database (using “pgAdmin”) in our
Customers App:

URL: 127.0.0.1:8000/customers

Hans-Petter Halvorsen

https://www.halvorsen.blog

Django Admin

Table of Contents

Django Admin
http://127.0.0.1:8000/admin

“Django Admin” interface
is included with Django.

http://127.0.0.1:8000/admin

Django Admin
• “Django Admin” is included with Django.
• “Django Admin” offers a CRUD user interface for all

your Models.
• CRUD is short for Create, Read, Update and Delete.
• Note! The Admin Interface is typically intended for

“superusers” and no for ordinary users of your
application.

• To use it you need to create a User.

Django Admin - Create User
...>python manage.py createsuperuser

Type the following to create a new User:
Then you are asked to create a
Username and a Password.

...>python manage.py runserver

Then run the server:

Goto http://127.0.0.1:8000/admin
and enter your Username and Password:

http://127.0.0.1:8000/admin

Django Admin
The following will appear:

Here you can Add, Change and
Delete (CRUD functionality)
Groups and Users.

How can we add Customers?

Customer App
We now get data that we inserted in the PostgreSQL database (using “pgAdmin”) in our
Customers App:

URL: 127.0.0.1:8000/customers

Add Customer Model
Django Admin offers a CRUD user interface for all your Models.
Let's add CRUD functionality for our Customer Model.

You need to register the Customer Model in the file “admin.py”:

Then go back to
http://127.0.0.1:8000/admin

http://127.0.0.1:8000/admin

Customer CRUD Interface

Now you can Create, Read,
Update and Delete (CRUD
functionality) Customers.

Customer App
Here is our final Customer App where the end-user see a list of available Customers,
while a superuser or administrator can Create, Read, Update and Delete Customers in
the PostgreSQL database and presented in the Customers web page.

Summary
• We created a Django Project and a Django Web Application.
• Django has support for databases like SQLite, MySQL/MariaDB and

PostgreSQL.
• Django includes an SQLite database, but for the others you need to

install the database system you want to use from their respective
websites and in addition install a Python package/driver for the
specific database system.

• In this Tutorial we used Django in combination with PostgreSQL.
• We created a simple “Customer App” that retrieves a list of

Customers stored in the PostgreSQL database.
• Finally, we used the built-in “Django Admin” module to create

CRUD functionality, i.e., the possibility to Create, Read, Update
and Delete Customers in the PostgreSQL database.

Hans-Petter Halvorsen
University of South-Eastern Norway
www.usn.no

E-mail: hans.p.halvorsen@usn.no
Web: https://www.halvorsen.blog

http://www.usn.no/
mailto:hans.p.halvorsen@usn.no
mailto:hans.p.halvorsen@usn.no
https://www.halvorsen.blog/

	Start
	Slide 1: Django and PostgreSQL
	Slide 2: Contents

	Introduction
	Slide 3: Introduction
	Slide 4: Introduction
	Slide 5: Customer App
	Slide 6: Software and Tools

	Django
	Slide 7: Django
	Slide 8: Django
	Slide 9: Model View Template (MVT)
	Slide 10: Django Files and Folders
	Slide 11: Django workflow

	PostgreSQL
	Slide 12: PostgreSQL
	Slide 13: PostgreSQL
	Slide 14: Installation
	Slide 15: pgAdmin
	Slide 16: PostgreSQL Connection

	Section2
	Slide 17: Create Django Project and App
	Slide 18: Create Django Project and App
	Slide 19: Command Prompt and Terminal
	Slide 20: Create and Activate Virtual Python Environment
	Slide 21: Install Django and Create Django Project
	Slide 22: Run the Django Project
	Slide 23: Create a Django App
	Slide 24: Create a Django App

	Untitled Section
	Slide 25: Django + PostgreSQL
	Slide 26: PostgreSQL
	Slide 27: psycopg2
	Slide 28: “settings.py”
	Slide 29: Migrate

	Customer Example
	Slide 30: Customers App
	Slide 31: Customer App
	Slide 32: Django Files and Folders
	Slide 33: Django workflow
	Slide 34: Create the Model (Table)
	Slide 35: “models.py”
	Slide 36: Create the Template
	Slide 37: “customers.html”
	Slide 38: Create the View
	Slide 39: “view.py”
	Slide 40: “urls.py”
	Slide 41: Customer App
	Slide 42: Add some Data
	Slide 43: Customer App

	Django Admin
	Slide 44: Django Admin
	Slide 45: Django Admin
	Slide 46: Django Admin
	Slide 47: Django Admin - Create User
	Slide 48: Django Admin
	Slide 49: Customer App
	Slide 50: Add Customer Model
	Slide 51: Customer CRUD Interface
	Slide 52: Customer App

	Finished
	Slide 53: Summary
	Slide 54

